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ABSTRACT

The trailing vortices generated by the control planes of sub-

marines give rise to surface signatures in the form of scars and

striations.

Two counter-rotating vortices were generated in a novel experi-

mental system and their interaction with the free surface was investi-

gated. In addition, the governing equations have been solved through

the use of the boundary-element method for a representative Froude

number. The results have been expressed in terms of the depth of

submergence of the vortices, their mutual induction velocity, and the

initial vortex separation. It has been shown that the free surface

begins to deform when the vortices are at a distance of about one ini-

tial vortex separation from the -free surface. The height of the maxi-

mum deformation is attained at a normalized time of about 0.1. when

the vortices are at a distance of about 0.5 bo from the free surface.

The elevated part of the surface Is bounded by two scars, whose

motion is slaved to that of the vortices.
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L. INTRODUCTION

* - Vortices and vortex wakes have become a major theme of

aerodynamics research since the advent of the large aircraft and the

understanding of their evolution required an examination of many of

the fundamental problems in fluid mechanics. Much of the progress

made during the past two decades was discussed at the Symposium on

Aircraft Wake Turbulence and Its Detection [Ref. 1] and the Aircraft

Wake Vortices Conference [Ref. 21. Comprehensive reviews of the

entire subject have been given by Donaldson and Bilanin [Ref. 31.

Widnall [Ref. 41, and Hallock and Eberle [Ref. 5].

These studies, as well as numerous others carried out since 1977,

have uncovered a number of complex problems which must be

resolved in order to achieve a better understanding of the important

features-of trailing vortices in homogeneous and stratified media. The

principal ones are as follows [Ref. 6]:

1. Roll-up process:. The velocity and turbulence distribution at any
station behind the wing depend on the wing section, wing-tip
shape, Reynolds number, wing incidence, and the distance of
the station from the wing [Ref. 7]. The distributions of the initial
velocity and turbulence, which influence the roll-up and the
decay process, cannot be changed independently. For example,
a change in the tip shape changes the core size, as well as the
velocity and turbulence distributions. High levels of turbulence
result in an increased diffusion of vorticity, which in turn
increase the core size.

2. Probe sensitivity of the vortices: Flow visualization studies
suggest that trailing vortices are extremely sensitive to
disturbances created by even very small probes or bubbles. This

13



forces one to use non-intrusive means of measurement such asaLaser Doppler Velocimeter. Even then, "vortex wandering"
[Ref. 81. which makes the vortices appear larger than normal in
a wing in a wind tunnel), or the unsteady nature of the flow (for
vortices generated by a wing in a tow basin) makes the mean
velocity profiles in the vortices difficult to determine.

3. Large-scale instabilities: The vortices are seldom observed to
decay away owing to viscous and turbulent dissipation. but are
almost always destroyed by either mutual induction instability
(Crow instability [Ref. 91) and/or vortex breakdown. The Crow
instability grows exponentially, and results either in linking of
the vortex pair into a series of crude vortex rings or in a highly
disorganized intermingling of the vortices.

Vortex breakdown, whose mathematical details have not yet
been adequately treated, rearranges the vortex structure and
increases the core size, turbulence, and energy dissipation.
Thus, it is very difficult to measure accurately the trajectories of
the three-dimensional vortices from their creation to their
ultimate demise.

4. Reynolds number: Even the highest Reynolds numbers, based
on wing chord, reached in wind tunnels or towing basins, are an

* order of magnitude lower than what is possible for an aircraft.
Thus, the scale effects are not easy to assess.

5. Ambient conditions such as turbulence and stratification play
major roles in the evolution of vortices. The quantification of
these effects requires numerical analysis and extremely careful
experiments [Ref. 101.

6. Ground or free surface effects: The vortex pair may move toward
a rigid boundary at which the no-slip condition must be satisfied
or toward a free surface at which the zero-shear condition must
be satisfied. In either case, the vortices come under the
influence of their images and move accordingly.

-: ~ The phenomenon is further complicated by several additional

facts. When the vortices are propelled toward a rigid surface, vorticity

of opposite sign is generated on the no-slip boundary and swept

toward the vortex pair. The total vorticity diminishes very quickly as

* vorticity from the two regions diffuses, the wall region serving as a

14
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strong sink for the vorticity associated with the original vortex

[Ref. 1 11. The development of a boundary layer along the rigid wall

may give rise to flow separation for sufficiently high Reynolds numbers.

With or without such a separation, however, the center of the vortex

pair eventually moves away, or "rebounds," from the wall [Refs. 11-

131.

For the case of a zero-stress boundary, the free surface still acts as

a vorticity sink, but this is relatively weak due to the absence of

intense oppositely signed vorticity. Thus, in the absence of other

impending phenomena, one expects a mild interaction between the

vortices and the free surface and a small rebound of the vortex pair

from the free surface. However, the ability of the free surface to

deform under the influence of strain fields leads to a strong inter-

action between the vortices and the free surface.

It is evident from the foregoing that the motion and the life-span

of trailing vortices are governed by a number of nonlinearly dependent

complex phenomena. A number a experimental and analytical studies

* .-. have been carried out at the Naval Postgraduate School by Sarpkaya

and his students [Refs. 6, 14-2 11 in order to investigate the effects of

these parameters on the rise and demise of the trailing vortices in

homogeneous and density stratified media. These studies have clearly

identified the various demise mechanisms in both media and estab-

lished basic relationships between the rise of vortices and the

governing parameters in a finite as well as effectively infinite medium

[Ref. 20], free from ambient turbulence.

15
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The present investigation is a continuation and refinement of the

previous studies. The intent is to analyze the rise and demise of a

vortex pair in a medium with a deformable free surface. This problem

is of interest both from the standpoint of determining the interaction
- .

effect of the free surface on the rise and demise of the vortex pair and

from tha standpoint of predicting the resulting free surface shape.-

%,'°

J. .16
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II. PHYSICAL ANALYSIS

A. DIMENSIONAL ANALYSIS

The dependent parameter of major importance to the problem

solution-is the instantaneous position of the vortex pair (x, y). It-may

v. be expressed as a function of the following parameters [Ref. 221:

p x = f(t, Vo, do, Po, dp/dy, v, bo, g, re, e, LI 1) (1)

and

y = f(t, Vo. do, Po, dp/dy, v, bo, g, re, e, L1 1) (2)

in which the variable definitions are as follows:

t time

V o  initial mutual induction velocity of the vortices

do -initial depth of the vortex pair

Po reference density of the medium

dp/dy linear density gradient

v kinematic viscosity of the medium

bo initial separation of the vortex pair

g gravitational acceleration

re effective core radius of the vortex

E rate of decay of the turbulent energy per unit mass

L11  integral scale of the turbulent field

The height and width of the test section were not included in the

foregoing because a detailed analysis, based on ideal vortices, has

shown that the velocities induced by the bottom or sides were

17
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negligible. Effects of surface tension on the instantaneous position of

the vortex pair are deemed negligible and thus are not included as a

parameter in equations (1) and (2).

A dimensional analysis of equations (1) and (2) yields:

x/bo = fTVot/bo. do/bo, Nobo/Vo, V0
2 /gbo. Vobo/v, re/bo, *, Lll/bo) (3)

and

y/bo = f(Vot/bo, do/bo. Nobo/Vo, Vo2/gbo, Vobo/v, re/bo, E*, Lll/bo) (4)

in which

No o (5)

is known as the Brunt-Vaisala Frequency.

All parameters in equations (3) and (4) may be changed indepen-

dently except re/bo, which is taken as nature provides it. The primary

reason for this is that a century of theoretical and experimental aero-

dynamics research has been incapable of describing the details of the

structure of the tip vortex to be used as the initial conditions in the

viscous solution. It is surprising, but true, that until recently the

importance of the generating surface shape and its influence upon

both the initial tangential velocity profile and the initial turbulence in

the vortex core had not been fully appreciated. Here the said influ-

ence has been characterized in terms of an effective core radius with

full awareness of its shortcomings.

18
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B. GOVERNING DIFFERENTIAL EQUATIONS AND BOUNDARY

CONDITIONS

The generation of internal waves and the rise and demise of a

vortex pair in a stratified medium may be analyzed through the use of

the equations of motion for an incompressible fluid. These equations

may be applied for both laminar and turbulent motions provided that a

suitable turbulence closure model is used and the usual Boussinesq

approximation (gravitational acceleration is much larger than fluid

acceleration) is adopted. For the type of motion considered herein,

the Boussinesq approximation is quite valid and has been used in the

investigation of all types of internal waves in stratified fluids.

For a two-dimensional flow, with y vertical and x horizontal, the

Navier-Stokes equations of motion are:
-k -lu -"u 1 aP

t-+ u5-+ VF - ' + V2u (6)

a V 'I laP()

Differentiating equations (6) and (7) with respect to y and x respec-
tively yields

a2 U O-2U 2U aV aU aU 1 ap aP 1 a2p a 2u) (8)

2V aU C)v 2v 2V a 2 V 1 aaP 1 a 2 p a 2

Subtracting equation (9) from equation (8) yields

19



Subtracting equation (9) from equation (8) yields

+ + F 'O-

1aa. 2- " _O__ (10)

Solving equation (6) for 5- r- yields

1 ap Du (11)

where

Do ( ) a( a( a(
F -R + +

Solving equation (7) for .- yields

1 P Dv
. Z= g+ vV2 v-Dt (12)

Substituting the results of equations (11) and (12) into equation (10)

and defining vorticity as

av) (13)

2.
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results in the following expression:

".1

When the gravitational acceleration is several orders of magnitude

larger than the fluid accelerations, the Boussinesq approximation is

appropriately invoked and the terms in brackets in equation (14) may

be neglected.

In order to deal with the case of a density stratified medium, the

density is defined as

P = Po + (y) + p'(x,y,t) (15)

where Po is the reference density, (y) is the initial variation of density

with y, and p'(x,y,t) is the fluctuating part of the density with time.

Then

A

and equation (14), neglecting the bracketed terms, becomes

+.. + (16)

21-U
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The last term above represents the effect of the density gradient and

gives rise to oppositely signed vorticity in a nonhomogeneous fluid.

The diffusion of density is given by

L. -vL--vV 2 p (17)at Uax +S - ( 7

Substituting equation (15) for density in the above equation yields

Lx+= + (18)

The equation of continuity is

TN +  0 (19)

Adding equation (19) to the left side of equation (18) and simplifying

results in

(UP) a(vp) =-v + vV2p' + v (20)

Equations (16) and (20) are thus the governing differential equa-

tions for the motion of a vortex pair in a density stratified fluid.

For the development of boundary conditions, it is assumed at the

outset that the influence of the sidewalls and bottom of the test

. v-section on the rise and demise of the vortex pair is negligible. The

validity of this assumption, when used in conjunction with numerical

computations, has been demonstrated by previous investigators [Refs.

18-20]. The fluid domain can thus be considered to be bounded only

22
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by a free surface which can be described as a function of x and time as
A' follows:

y = Tl(x.t)

where

I n(x,o) = 0

describes the initial undisturbed location of the free surface.

The free surface requires both a kinematic and a dynamic bound-

ary condition as described by Sarpkaya and Issacson [Ref. 22]. The

kinematic condition states that any particle which lies on the free

surface at any instant will never leave it. This leads to

Di aTI In
Dt= + =v at y= (21)

The- dynamic free surface condition requires that the pressure

difference across the interface results in a force normal to the bound-

ary which is due wholly to surface tension. This condition takes the

form

P = Pa + 0 + (22)
"5'

where cr is the surface tension, _' and -L are the radii of curvature of

the free surface in any two orthogonal directions, and P - Pa is the

pressure difference across the interface.

.V 23
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As noted previously, the effects of surface tension can be assumed

to be negligible. This observation has been verified experimentally by

Gray [Ref. 17]. Thus, if the flow is considered inviscid, the pressure P

within the fluid can be described by the unsteady Bernoulli equation as4 ....

follows:
P

T- +2 -r p = F(t) (23)

.-Se

where 0 is the velocity potential such that

-.
U = ao v= ao (24)

'77

and q2 = u 2 + v2 . F(t) is an arbitrary function of time only.

44 5When the pressure just outside the liquid is constant (i.e., atmo-

spheric), the free surface condition reduces to
q02

• .:+ +g = 0 at y = il (25)

where F(t) has been included as part of -t

C. DIMENSIONLESS PARAMETERS

It is convenient at this point to cast the governing equations, (15)

/and (20), in nondimensional forms, scaling each variable by a quantity

characteristic of its expected magnitude. Two possible time scales

exist. The dynamic time scale utilizes the time a characteristic length

would be traversed by a fluid particle traveling at the characteristic

velocity. The buoyant time scale is based on the natural buoyancy

24.1?e
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frequency of the stratified flow, i.e., the Brunt-Vaisala frequency No

defined by equation (5). Each of these scales gives a slightly different

form of the normalized governing equations.

1. Dynamic Scale

Introducing Uc and Lc as the characteristic velocity and

length, one has the following nondimensionalized quantities:

-m = Lc/Uc tm= Uct/Lc Um =u/Uc vm =v/Uc

Xm X/Lc Ym = y/Lc Pm P/Po (26)

Substituting the above into equation (16) yields

"..'U C + U c -

• .. 7V m) CpO Xm (PPfc ) (27)

Simplifying

Uc 2 a m  Uc 2 a)(UmCrn UC2 oa(VmCrn UC VaI m °p'rn

m + I- M +L

which becomes

4-rM D(UmCm) a(vmm) V 1 gL P'm
. + 28)J m + Xm i+ ym - UFm+ Uc

or
K m (Umm) +a(vmm) 1 V2 M I prn (29)

Jt- m +  8Xm +- m m + x2

25



where

Re = UcLc/v (characteristic Reynolds number)

F= Us/4fgii (characteristic Froude number)

Similarly, the density diffusion equation may be expressed in

nondimensional terms by making equivalent substitutions into equa-

tion (20) as follows:

+-*, 2+ V, P-v ,+ p+V4,

* This becomes

S (o'n) + (Ucumpop M) + (VMUcpop'Mj

UCvM a +v V a2 (pop'rn)S (pop',M) +V7V2(pop'ni + E -F

Which upon simplification reduces to

UC13O ap ,M UCPO D(Umprnrj UCP0 a(vmp'nj
E-C atm ~- L-C ax + C - ay

uCP0  a~m vpov VPo -P~m

Multiplying both sides by Lc/poUc yields

4P'm a(umrnJ a(vmP'mJ v a~m V V 025
-+ + Vm + T~ ~P'm +--i (30)+t axm ayr 7FmT-L
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Incorporating the characteristic Reynolds number, this equation

becomes

a P'm kumP',rj a(VmP', a-m 1_ 2 _Pm
- atm + axm + -am- - vm  + ReVm P'm+ (31)

The Brunt-Vaisala frequency given by equation (5) as

Po a -Y)

may be written as

N 2 - -g a(PoPm)
0 PoLc aym

which becomes

N2LC D-5m
., g =-*~

To further simplify equation (31), the following definitions are made:

N = g/L (characteristic Brunt-Valsala frequency
f.. ' squared) (3 3)

and

N- = 2- g - m (34)
n=~~ -0- (4

Nz g y

Substituting equation (34) into equation (31), the nondimensional

d..: form of the density diffusion equation in final form becomes
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+ x nV+ RJ (35)

2. Buoyant Scale

Again introducing Uc and Lc as the characteristic velocity and

length, the following nondimensional quantities are defined:

u v x
XmM YM L P.':Um U~ Vm - c Xm -- m-Po

In this case, however, time is nondimensionalized using the square of

the characteristic Brunt-Vaisala frequency. Namely

and then

tm = tNc

.

9. also

mn = c/Nc

. Substituting the above into the governing equation given by equation

(16) yields

Nc a ( mNc) + (umUcmNc) + L a (vmUcmNc) =

cVV ( m Lco a PXm oP'm
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simplifying

N2~m UcNc aUcNc D £cVV2 Lap'm
Y7 (UM + 1- (VMW m) ur~

C "m.,-L M . x

~ -~ which becomes

K~M UC D(UMWm+ UC a(vmcm) V V____ + a___ 36

Tim* Lc~ axm Lc~ aym NcLVU RN fc]NM 16

* but

N2

* Thus equation (36) becomes

KM UC (um6) a(VM M = V C __ _

dtynJR iYM) f~iL C M XM

or

K + Fv a(umM +DXMM -V2 M+a' (37)

where Fv and Re are as defined above.

The density diffusion equation is similarly nondimensional-

ized as

aL ~u')+ avp) -v ~i+VV2p+V a2

-. 4-x--YO- 
W

a-9



rr'W.WrwWWrtVvrvw-

which becomes

NcRM(Pop'xM) + (UmUCPOP'm) + 1 FM (VmUcpopm)=

UCvM a V V 02
-j7 P45M) + V (pop'n) + 7(PO n)

The above equation can be simplified to yield

pONc (U(mP'm) + 1., -(VMP'M)

-UCPO m~ ~P0 V 2 P VpO a)2PM

Introducing Fv and Re as before and recalling that N~ = one has

PM [a(umP'n) a(vmP'm] F a

Re P + S -)(38)

Now as developed above in equation (34)

N2 N2L
n 2 = -~ where n2 0 -L

C

Substituting for in equation (38) yields the nondimensionalized

density diffusion equation

ap'm [ v a(ump' J + a(vm prrj] F n v v M +0 M ( 9
Ztm L X UAYJ M RemJ )
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Equations (37) and (39) are valid when Fv<<l and buoyancy

dominates the flow. When Fv approaches zero, the equations that

result from equations (37) and (39) describe the propagation of linear

internal waves. The buoyant scaled forms of the governing equations

are of interest to the present investigation because, for submerged

bodies of naval interest, Fv is typically about 0.001 and thus signifi-

cantly less than one.

Having established the buoyant scale as the form of interest,

the boundary conditions can also be nondimensionalized using the

same technique. From equation (21).

S -+ 0=v at y = Ti

which becomes

am Ucum rlm
SNcLc 'i- + -I - T-- =Ucvm

* where

Tim = ILc

Simplifying the above yields

"1rnm Uc 0lm Uc
S-m + N-- um -m - NcLc vm

Introducing Fv as before

DI m aIim
S + Fv um Fx= Fvvm at ym =rim (40)
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and

M--0NcL (nondimensional velocity potential)

Equation (25) can be nondimensionalized as follows:

C)O "+ g2 + gt = 0Wt 2

becomes

a(0mNcL2) +2( 2Nc Ctm + c + gLcTIm 0 (41i)

where

Further simplifying equation (41) yields

" m U c q2 gqm 
(2

tm + N-c -0 (42)

but

£1 U2

= and cF2

Thus equation (42) becomes
a m q29M

-=-m + Fv +1m=O at ym=Thm
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For the purposes of the present investigation, the flow will be
assumed to be inviscid, i.e., the viscous diffusion will be ignored to a

first order approximation. The nondimensionalized forms of the

governing equations and boundary conditions are summarized in

Figure 1.
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II1. NUMERICAL SOLUTION TECHNIQUES

A. INTRODUCTION

The significant difference between this study and the work of

previous investigators is the introduction of a deformable free surface

and the resulting complex interplay between kinetic and poten~tial

energies. The computational domain thus has an unknown boundary

on which a double condition must be imposed as previously outlined.

This complexity, as well as several other specific features of this

problem. directly influences the ability of a numerical method to con-

verge to an adequate solution.

The governing differential equations and boundary conditions are

both nonlinear. Sarpkaya and Issacson [Ref. 231 note that for small

amplitudd waves (amplitude «<wavelength), the boundary conditions

at the free surface may be linearized. This approach, although possibly

valid in the vicinity of surface striations, would not be valid for the scar

front where observed light diffraction patterns [Ref. 171 indicate very

small radii of curvature. Additionally, Haussling and Coleman [Ref. 241

have demonstrated numerically the importance of nonlinear terms in

solving the free surface problem in the vicinity of the generation

source. This is the case encountered in the region of the scar front.

V, The rate of change of the free surface deformations also tends to

be slow. The scar pattern develops as the vortex pair rises to its

maximum height and then the scar is trapped by and slaved to the
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vortex beneath the surface. The scars and striations are thus not small

amplitude surface waves propagating independently from their

generator, but are in fact local disturbances whose generation, growth.

and propagation are controlled by the vortices. This aspect, observed

-., experimentally by Gray [Ref. 171, separates this problem from other

research in the field of deformable free surfaces. Previous investiga-

tors, applying numerical methods to such surfaces, have dealt almost

exclusively with surface waves generated by a moving body (surfaced or

.-. submerged) and propagating away independently.

The numerical methods reviewed for solution of this problem can

be broadly. categorized into Finite Differences, Finite Elements,

Boundary Integral Equations, and Hybrid Methods which employ com-

binations of the others. For the purposes of this study, such catego-

rization is based on the manner in which the governing equations are

tackled in the computational domain. It is noted that all of the
methods reviewed utilize some form of finite difference scheme with

respect to time. The applicability of each method and the associated

advantages and disadvantages are discussed and summarized at the

end of this chapter.

B. FINITE DIFFERENCE TECHNIQUES

The use of Finite Difference techniques in solving partial differen-

tial equations has been well established and successfully implemented

by several investigators. For the case of a nondeforming free surface,

the governing equations are solved in the computational domain using
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al., -+, -Lax (30)

and

a; y + vV2 P, + v 0
,M.

and the Biot-Savart integrals

u(x.y) (Y' -Y) (x'. y') dx'dy'J 21cr 2  (31)

A

v(xy) (x -x') x', y') dx'dy' (32)f2nr2 (2

A

where

r2 = (x-x') +y-y')

x'. y': position of the vorticity

x, y- point where u and v are to be calculated

In nondimensional form, the buoyantly scaled forms of equations (31)

and (32) become

"e.. 36
$..

... . .,, . _' , -4 . . ,. . , .- ,. . .- , .



UMn IXr,YrnI= 2ir 2 U
f Mn

A

vM xMy r (xm - X'M) rn (X', ' rr) dx'mdym LCNC

f in
A

Upon simplification, the equations become

(yim - Yin) n (x'm, Y'n) dxmdymr

A

Fv vm (m~ym) r (xm - xn) m (xmi, y'nj dxm dym 34
f in

A

where parameters are nondimensionalized as before.

The governing equations can then also be rewritten as

Drn a(Fv umn m a(Fv Vrn Cm) Fv ap 'M

and

ap'm a(Fv Um Pn1  a(Fv v prrj
+ + am Fvm n2 + vV2'+

where Fvum and Fvvm are calculated directly using the nondimension-

alized forms of the Biot--.Savart Integrals equations (33) and (34).
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The treatment of the governing differential equations in a stream

function formulation is thus relatively straightforward. The complica-

tion is associated with the determination of the free surface location in

conjunction with the solution of the governing equations, all preferably

simultaneously, as noted by Yeung [Ref. 251.

Finite Difference methods are most suitable, or at least simplest

to implement, for a boundary geometry that is rectilinear. The

deformable free surface requires the use of "irregular stars" for differ-

ence schemes near the fluid boundary. These "irregular stars" are of

an inferior accuracy when compared to the remainder of the grid.

Thus, either the mesh must be refined or the difference formula
0

changed to a higher order if accuracy is to be maintained near the free

surface and especially in the vicinity of the scars. Yeung [Ref. 25]

notes that, with the location of the free surface unknown a priori, we

have the unfortunate situation that the regions that demand the great-

est accuracy are precisely those where it is hardest to achieve. Also,

since the shape of the free surface affects the migration of the vortex

pair, a loss of accuracy in determining the free surface will be

reflected in the determination of the location of the vortex pair. This

complication is one not included in the investigations reviewed below

where the generating body moves independently of the free surface

location.

Conformal transformations can simplify one aspect of the problem

* -"by transforming the real geometry with a deformed free surface to a

rectilinear mesh. The boundary conditions are thus simplified but the
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resulting field equations are increased in complexity. Haussling and

Coleman have successfully utilized transformation functions of this

Pform to generate a time independent computational region in which

nonlinear free surface boundary conditions are applied.

The Finite Difference method primarily benefits from the direct

solution. of the governing differential equations as opposed to- the

development of intermediate integral relations required in the inte-

gral boundary techniques. The cost of such an approach is in the

computational intensity required to iteratively solve the finite differ-

ence forms over the computational domain. Haussling and Coleman

have demonstrated the use of a successive over relaxation technique to

solve steady state nonlinear free surface boundary condition problems

as discussed above.

A modification of successive over relaxation, and one offering

increased rates of convergence, has been demonstrated by Brandt,

Dendy, and Ruppel [Ref. 261. Their technique utilizes a multigrid

solution which solves for low-frequency components of error on a

course grid where the calculation is relatively inexpensive, and high-

freinuency components of error on a fine grid where successive over-

relaxation is efficient.

Theodussiou and Sousa [Ref. 271 also utilized a modified grid sys-

tem to speed convergence by staggering their grid structure such that

pressure was defined at the center of the discretized control domain

and velocity components were defined at the center of the control

domain faces. This arrangement has the convenient feature that the
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velocity components are stored at just the points at which they are

required for the calculation of their advective contributions. The

pressure gradients can be represented by central differences without

inducing non-physical oscillations in the pressure distribution. Note,

however, that both of these multigrid techniques add to the complex-

ity of establishing a mesh which moves with the deforming free -sur-

- face. Both sets of authors suggest, however, that this added complex-

ity is outweighed by the savings in ease of convergence.

Ohring [Ref. 28] and Ohring and Telste [Ref. 29] have also partially

circumvented the computational intensity of an iterative technique by

directly solving the finite difference equations resulting from the

Laplace Equation. The technique employed utilizes a fourth-order

solver to diagonally decompose the resulting coefficient matrix. Taylor

series approximations are also suggested for application to the nonlin-

ear free surface boundary conditions. It is suspected, however, that

the computational benefits derived from such a technique wil be lost

when the coefficient matrix becomes nonlinear as would result from

the governing equations in this problem.

For completeness, as noted previously, finite differencing in time

is required for all the numerical methods reviewed. Sarpkaya and his

students [Refs. 17-201 have successfully employed an upwind-differ-

encing scheme in time and verified it with experimental results.

Yeung notes that the free surface conditions, being first order in time,

can be used to advance the solution of the elevation and velocity

potential on the free boundary. However, the difference form utilized
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can dramatically affect the stability and thus a modified Euler method

is suggested since it is unconditionally stable. Haussling and Coleman

-: successfully utilized this technique for advancing their solution in

time.
'.;

C. FINITE ELEMENT METHODS

-- The Finite Element and Finite Difference methods share the

common feature that both attempt to solve the governing differential

equations directly, differing only in methodology. The Finite Element

Method is one based on the method of weighted residuals. The usual

procedure consists of first subdividing the domain of interest into a

mesh of finite-sized subregions, within each of which the solution is

,. represented by some convenient choice of trial functions, usually

polynomials. The trial functions are determined by substituting them

into the governing equations and requiring the integrated error or

residual based on certain weighing functions to vanish. An integration

by parts is normally preformed to reduce the interelement continuity

requirements of the trial functions and to incorporate the

nonhomogeneous boundary conditions. The weighing functions, also

known as test functions, can be chosen in a variety of ways. A 'weak

formulation," such as the Galerkin Method, makes the space of the

test functions identical to that of the trial functions. In contrast, a

'strong formulation" is one based on the existence of a variational

principle where a functional is made stationary. Specifics of finite

element techniques may be found in Zienkiewicz [Ref. 301 and Dhalt

and Touzot [Ref. 31].
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The nonlinear aspects of this problem affect the Finite Element

Method in much the same way as the Finite Difference Method. The

coefficient matrix of a representation such as

[K] [U] = [B]

where

[K] = coefficient matrix

[U] = matrix of unknowns

[B] = forcing function matrix

is neither symmetric nor independent of [U], as in the case of a linear

problem. An iterative technique is thus required to solve this problem

at a given instance in time. As a result, much of the advantage of

reduced storage and computation time inherent to finite element for-

mulations is lost. The choice of iterative techniques does not differ

* from that available to Finite Difference Methods and, thus, once the

* computational domain is discretized, no significant difference in

problem- solution is involved.

The discretization of the computational domain is an area where

the Finite Element Method does have distinct advantages. The intro-

duction of curvilinear or isoparametric elements of higher order

allows one to cope with any arbitrary boundary geometry with little

loss of accuracy. Yeuing notes that, although this particular advantage

is reduced when Finite Difference Methods are used with conformal

transformations, Finite Element Methods still retain superiority in

flexibility, particularly in the case where varying size and shape

elements are introduced to overcome local irregularities. Such
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irregularities are exactly the problem involved in the vicinity of the

deformable free surface. Curvilinear elements could be used to fit the

*W free surface with finer elements incorporated in the vicinity of the

scar front. This could be accomplished with little loss of accuracy and

less complexity than that which results from the use of "irregular

stars" in the Finite Difference Method. Note, however, that, since the

scar front moves with time, an adaptive mesh refinement technique

. would be required to appropriately place the finer elements in the

vicinity of the scar. Sarpkaya and Hiriart [Ref. 321 successfully utilized

varying size elements in the vicinity of the free surface in conjunction

with their moving net computation. Although the free surface in their

case differed from that involved in this problem, the basic concept of a

"flexible mesh" remains unchanged.

Admittedly, the basic problem of determining the location of the

free surface in conjunction with solving the governing equations

remains one of trial and error, regardless of the type of discretization

employed. Larock and Taylor [Ref. 331 adjusted the free surface loca-

tion to achieve tangency to the surface velocities calculated based on

an assumed free surface position. The pressure boundary condition

was then used as a check of this resulting location. Larock and Taylor

note, however, that such a technique will not work well where high
a." curvature or Froude numbers (Fv) less than one are involved, as is thea.

case in the present investigation. As an alternative, Sarpkaya and

.Hirart adjusted their free surface location to satisfy both the pressure

and velocity boundary conditions simultaneously.
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The Finite Element Method, when formulated using the varia-

tional techniques, also benefits from the fact that the boundary condi-

tions may be included as an integral part of the functional rather than

dealt with separately. Bai and Yeung [Ref. 34] and others have suc-

cessfully employed variational techniques to directly incorporate

boundary conditions in the solution of linear water wave problems-

D. BOUNDARY INTEGRAL EQUATION METHODS

The term "Boundary Integral Equation Method" can be applied to

a large group of numerical techniques that include Green's Function

formulations, Spectral Methods, and a boundary element application of

* the Finite Element Method. In all cases, the solution approach differs

dramatically from that of Finite Differences and Finite Elements in

that the governing equations are not attacked directly. Instead, the

problem is solved by satisfi~rng boundary conditions on a discretized

boundary and thus reducing the spatial dimensions of the problem by

one. Physical quantities such as wave height and fluid pressures are

required and solved for only on the boundaries. Interior data, although

available based on the boundary solution, is not specifically required.

Boundary Integral Equation Methods thus have the distinct advantage

that only the physical quantities specifically desired on the free sur-

face are required for the solution.

Basically, there are two approaches to boundary integral formula-

tions. Either an approximating function is chosen on the boundary

that satisfies the governing equations in the domain and approximates
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p~. the boundary conditions, or vice versa. In both cases. the solution

technique can be further divided into indirect and direct methods.

In Indirect approaches, the fundamental solution is approximatedI on the boundary by a function with unknown coefficients. These coef-

* ficients are found by satisfying the boundary conditions. Distributed

singularity methods, such as simple-source distributions, are an exam-

pie of this approach. In this case, the fundamental solution is repre-

sented on a discretized boundary by distributed simple sources of

unknown strength at known locations. The strength of each source is

then determined based on the solution of the boundary conditions.

Direct methods find the fundamental solution through the use of

Green's Function formulations, which directly incorporate the

governing equations. The resulting Green's Function integrals are

typically solved using quadrature or point kernel techniques. The

* main disadvantage in this approach is that, for the governing equations

involved in this problem, there is no straightforward Green's Function

formulation that leads to fundamental solution.

The main advantage of the Boundary Integral Equation Method is,

then, the ability to directly discretize the free surface without a loss of

accuracy. Information is thus obtained exactly where required. How-

ever, Brebbia [Ref. 351 notes that this is not without the sacrifice of a

symmetric coefficient matrix such as that which is common to the

Finite Element Method. Yeung notes that, in general. the great

reduction in the size of the matrix outweighs the added complexity of

solving a nonsymmetric system of equations.

45



The disadvantages of Boundary Integral Equation Methods are

directly associated with errors that are the result of discretization.

This discretization plays such a large role in the formulation of an

efficient boundary integral equation that Brebbia refers to these tech-

niques as "Boundary Element Methods." In all formulation tech-

,.= niques, elements of one type or another are formed over whieh a

fundamental solution must be approximated either by distributed sin-

V<. gularities, Green's Function integrals, or trial functions for finite

elements.

Discretization errors result both from collocation errors and geo-

metric surface errors. Collocation errors are primarily the result of

leakage, as noted by Hunt [Ref. 361. Since the boundary conditions are

. satisfied exactly only at discrete points, the remainder of the free sur-

*- face is -porous" by comparison. Leakage errors are reduced by

- increasing the number of free surface elements and thus the number

of discretization points. This, of course, is done at the expense of

computational intensity. Geometric surface errors result from the

approximation of a curved free surface by linear elements. This prob-

lem becomes particularly noticeable in areas of high curvature, such as

scar fronts. Higgins and Cokelet [Ref. 371 noted that this problem can

be partially circumvented by using a Lagrangian description of

marked" particles on the free surface. These particles tended to

- concentrate in the regions of highest curvature, thus giving improved

accuracy exactly where needed.
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Finite Element Method formulations using boundary elements

only can also circumvent some of the errors associated with the collo-

cation and geometric surface by using curvilinear or higher order

parametric one-dimensional elements. The problem then is one of

finding suitable fundamental solutions that satisfy both the governing

equations and continuity requirements between elements.-

Finally, Boundary Integral Equation Methods are complicated by

the necessity to include nonlinear terms in the boundary condition for

the free surface. As previously noted, this is necessary in order to

maintain accuracy in the vicinity of the scar front where very small

radii of curvature occur. Several researchers have successfully applied

various forms of the Boundary Integral Equation Method to Laplace

equations with linearized free surface conditions, but only a few have

incorporated a nonlinear condition. Faltinsen [Ref. 381 incorporated

* nonlinear conditions by using the properties of the fluid particles on

the free surface at one instance in time to establish a new free surface

location and step the solution forward in time.

E. HYBRID MIETHODS

The use of a different technique in different portions of the com-

putational domain results in a hybrid numerical formulation. This type

of formulation attempts to maximize the beneftits of any one particular

method by employing it only in regions where its accuracy remains

high. A secondary objective Is to reduce the computational intensity of

the overall routine by using a coarser, less time-intensive technique in

areas where accuracy is not of particular concern. This is exactly the
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case in the regions far removed from the free surface. The usual

approach is to take advantage of the availability of analytical solutions

in regions where the flow geometry is relatively simple. This

approach allows the number of mesh points to be reduced with a

- resulting decrease in required storage and computational intensity. A

- . further advantage is that the analytical solutions can be chosen to

permit a simple solution of radiation type boundary conditions, as

V noted by Yeung [Ref. 251.

-. The disadvantages of Hybrid Methods are associated with the

necessity to properly match the solutions of different subdomains in

the overall computational domain. This matching may result in

numerical perturbations to the solution technique if not properly

employed. Additionally, the advantage of reduced total grid points is

* somewhat offset by the added computations required to match

solutions at the common boundaries.

Yeung notes that "the more successful Hybrid methods have so far
been restricted to linearized problems where analytical solutions in

the exterior regions could be obtained without too much difficulty. In

particular, treatment of steady flows in a uniform stream or time-har-

monlc flows with linearized boundary conditions have been quite well

established." [Ref. 251

Bal and Yeung [Ref. 341 utilized a finite element grid in the vicinity

of the free surface and an eigenfunction solution in the exterior region

to reduce the computational intensity of their routine. Chang and Plen

% [Ref. 391 used a source distribution to formulate a Boundary Integral
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* Equation Method near the free surface and a finite difference routine

in the exterior regions to calculate the hydrodynamic forces on a body

moving beneath a free surface. It should be noted, however, that both

sets of investigators used a Laplace formulation with linearized bound-

ary conditions to obtain their results.

For. completeness, it is noted that Hybrid methods could be -con-

sidered to include various numerical techniques that employ the same

method throughout the computational domain but in different man-

* ners in each subdomain. Such is the case, for example, when a finite

* element method is employed with a varying grid and/or element type

in various regions of the computational domain.

* F. NUMERICAL METHODS. CONCLUSIONS, AND SELECTION

The synopsis of advantages and disadvantages for each numerical

method listed in Table 1 provides a good source of information for

making a wise choice of formulation to be used in this problem. The

"best" method is one which will meet the goals of the investigation

while maximizing the advantages in areas of particular concern.

In this case, accuracy in the vicinity of the free surface is of par-

* ticular importance since ultimately it is the free surface shape which

is desired. This accuracy must be obtained with full consideration of

the necessity to include nonlinear boundary conditions while mini-

* mizing the computational intensity of an iterative process. Tuck. in a

* paper by Bal and Yeung. observed that "to a certain extent the 'best'

* method will always be that which appeals most to the person pro-

gramming it. and hence that which gives him the greatest chance of

49
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writing a successful program irrespective of efficiency. There is no

less efficient program than one which does not work at all." [Ref. 34]

Given that a successful program can be developed (a pretty big given),

it is then necessary to maximize both efficiency and accuracy.

With full consideration of the concerns given above, the Boundary

Integral- Equation Method surfaces as the method of choice for the

following reasons:

1. Computational intensity is minimized by reducing the spatial
dimensions by one. This aspect is particularly noticeable when
consideration is given to the iterative requirements of this
problem. This substantial improvement directly incorporates
any similar advantage that can be gained by using a varying Finite
Element Method or Hybrid Method.

2. Accuracy is maintained at the free surface by incorporating the
best aspects of Finite Element Methods and a Lagrangian
description of marked particles. This direct discretization of
the free surface provides both accuracy where needed most and
an exact solution of boundary conditions at the marked points.

3. Storage requirements are drastically reduced since only physical
quantities at the free surface are required or needed.

The implementation of the Boundary integral Equation Method

through the use of distributed vortices will be outlined in detail in the

following section.
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[V. DISTRIBUTED VORTEX MODEL

A. INTRODUCTION

Discrete vortices, with or without a core, or vortex sheets have

been used as boundary elements to simulate separated and unsepa-

- rated flows. The method consists of the determination of the appro-

priate strength of the vortices at each time interval through the use of

* - the governing equations. The vortices are then convected to their

new positions and the process is repeated. In spite of its simplicity,

the distributed vortex model presents several difficulties, all of which

are related to discretization and the use of vortices. The evaluation of

* the governing integral equation cannot accurately be accomplished

merely by applying a standard integration formula. A vortex sheet or a

* string of point vortices is unstable to small sinusoidal disturbances of

any wavelength. This phenomenon of Helmholtz instability persists in

* '1 curved nonuniform vortex sheets, at least for short waves, unless the

sheet is rapidly stretching. In other words, the round-off and trunca-

tion errors are rapidly amplified to cause the chaotic motion which

often ruins practical calculation. If it is granted that it is the growth of

short waves which can ruin calculations with vortex sheets, it is sensi-

ble to consider ways of removing the instability. This is because the

* instability is introduced by the step of replacing a shear layer of small,

but finite, thickness by a vortex sheet. One could give up the vortex

sheet approximation and return to the computation of the evolution of
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a thin layer. This is without doubt the most satisfactory procedure, but

-~ it involves much more computation.

An alternative approach is to modify the governing differential

equation to allow for finite thickness but the resulting equation, while

only a little more complicated than the original equation, has not

proved amenable to computation.

Another possibility is to apply a linear smoothing formula, such as

that introduced by Longuet-Higgins and Cokelet [Ref. 371 in their

work on nonlinear water waves. The subsequent applications, includ-

ing the one discussed herein, have shown that chaotic motion sets in

sooner or later regardless of the smoothing. The repositioning tech-

nique introduced by Fink and Soh [Ref. 401 and used subsequently by

Sarpkaya and Shoaff [Ref. 41] removes the most unstable mode and

reduces the growth of the higher modes of Helmholtz instability.

However, it does not prevent the growth of spurious waves along the

vortex sheet. The disadvantage of the smoothing, either through the

use of a numerical filter or through the repositioning of the vortices, is

that it is not clear in general what the relationship is between the

results achieved and the unknown exact solution. The problem may

not possess a solution for all time, and in this case the use of smooth-

A ~ ing could yield an acceptable -looking solution where none in fact

exists. Alternatively, the solution arrived at through smoothing may

not be even close to the exact solution.
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B. APPLICATION OF THE DISTRIBUTED VORTEX METHOD
The liquid surface was represented by a number of point vortices.

Their positions were symmetrical with respect to the x axis, situated

on the free surface. However, the strength of a vortex at (x, y, nor-

malized by bo) was opposite to that of a vortex (image vortex) at (-x, y).

From a mathematical point of view, one would like to have the vortices

extend from -00 to +0 and the two trailing vortices originate at (1/2,

-c) and at -1/2, -o). This is impossible from a numerical point of

view. Observations have shown that the free surface rises in a rela-

tively small region directly above the trailing vortices. The remainder

of the free surface remains undisturbed. These observations and

several sample calculations led to the conclusion that the free surface

can be restricted to a region extending from x = -10 to x = +10.

Furthermore, the trailing vortices are assumed to originate at a depth

ofy = -5.

N' The complex function representing the two trailing vortices

below the free surface and the vortices on the free surface is given by

vp w = 2- In (z - zo) + oIn (z + o+ L- In (z - zi)

* - 7 in (z +

in which the strengths of the free-surface vortices are normalized by

the strength of the trailing vortex. All coordinates are normalized by

bo, Then the velocities, normalized by Vo = (F 0 /2irbo) anywhere in the

fluid medium is given by
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dw iPO 1 iPo 1 irm 1 i~r 1U. 1v 2, (z--Z0 ) + 2 (z+-Zo) + 21r (z- zt) 2 n (z+z()

The normalized boundary condition at the free surface is given by

2Dom q2 flm
Dtm1 + v 0 (36)

Thus, at least theoretically speaking, one can calculate the poten-

tial function 0 from the complex velocity potential w (the real part of

w), the velocity of the vortices from equation (35), the elevation of the

free surface from equation (36) for a given Froude number Fv (Fv =

Vo/gbo), and trace the evolution of the free surface as a function of

time. This relatively simple-sounding procedure is anything but sim-

ple, primarily because of the fact that the numerical instabilities even-

tually lead to large-scale instabilities, as noted in the introduction to

this section. The use of various smoothing techniques was a viable

option and, in fact, was tried at various stages of the calculations. The

results have shown that the growth of the instabilities increases with

decreasing Froude number. Neither the use of smoothing techniques

(e.g., the Longuet-Higgins technique) nor the use of vortex sheets,

vice discrete vortices, can eliminate the eventual development of a

chaotic behavior on the free surface. It is because of this reason that

.. the use of smoothing was ruled out and the calculations were

restricted to a relatively high Froude number (Fv = 1.125).

The specific details of the numerical calculations are as follows:

(1) assign the position of the vortices; (2) find the strength of the vor-

tices and the velocity potential assuming the free surface to be rigid;
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(3) advance the position of the trailing vortices for a time interval t

(0.01 in the calculations); (4) recalculate the velocity of the surface

vortices and advance them forward in time for a time interval t; (5)

.- calculate the strength of the free surface vortices by iteration until the

free surface condition is satisfied; (6) calculate the velocity of the sur-

face and trailing vortices and advance their positions for a time inter-

val t; and (7) repeat the calculations by returning to step (5).

The procedure described above is relatively simple and does not

require excessive computer time (about 20 minutes on IBM 3033).

However, the free surface eventually does become chaotic. Some of
01

the instabilities can be alleviated without smoothing through a Judi-

cious selection of the initial position of the surface vortices. Numerous

calculations have shown that the vortices near the y axis begin to slide

sideways as the free surface (or the vortex sheet) stretches. Conse-

*" - quently, the thinly populated regions of the sheet do not yield a

smooth free surface and the flow begins to leak between the vortices.

Also, the regions where the free surface is depressed (where the scars

develop) become overpopulated with vortices, leading to the growth of

*. short-wavelength Helmholtz instability. This problem can easily be

alleviated by packing the vortices more densely near the y axis at the

start of the calculations so that the entire surface becomes more or

less uniformly represented at later times. This simple technique has

been used in the results presented herein. An exponential function

was employed to assign the initial vortex spacings so that near the

-'5
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v axis the vortices were separated by a distance of about 0.03 and by a

distance of about 0.25 towards the end of the vortex sheet.

C. RESULTS OF THE NUMERICAL CALCULATIONS

The evolution of the free surface with time is shown in Figures 2.1

through 2.27 for Fv = 1. 125. The normalized time in these plots is

given by T = ('Jo t/bo - do/b 0 ) where do is the initial depth of the

trailing vortices. The time T = 0 corresponds to that at which the

trailing vortices would have reached the undisturbed free surface had

they continued to move with their initial mutual induction velocity.

The use of other normalized times is not suitable since they tend to

depend on the initial position of the trailing vortices.

Figures 2.1 through 2.27 show that the free surface directly above

the vortices rises rapidly while the adjacent portions of the surface

depress and form two strong scars. Unlike the rigid surface case,

where the trailing vortices continue to move towards right and left at a

depth of about y = -0.5. the trailing vortices below the deforming sur-

face almost come to rest at a point slightly above the free surface.

Furthermore, their initial spacing remains nearly constant. This sug-

gests that the Kelvin oval formed by the trailing vortices pushes the

free surface up as if it were rigid during its upward migration. Evi-

dently. this finding is based on the assumption that the trailing vor-

tices are point vortices and are not subjected to viscous and turbulent

diffusion. In reality, the vortices quickly become turbulent, their core

radius increases, and the vorticity is diffused over an ever-increasing

area with the passage of time. The amount of diffusion depends on the
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',: initial position of the trailing vortices. Consequently, the trailing vor-

tices emanating from large depths diffuse over a larger area relative to

those emanating from smaller depths. There is at present no suitable

mathematical means to deal with the turbulent diffusion of such vor-

tices. The best one can do is to generate the trailing vortices at

depths sufficiently close to the free surface to prevent excessive dif-

fusion and yet sufficiently far so that the free surface remains

undeformed at the start of the motion. Extensive calculations and

experimental observations have shown that the free surface does not

begin to deform until the trailing vortices reach a depth of about y

-1. Thus, it is perfectly safe to place the trailing vortices at y =-3 at

the start of the calculations.
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V. EXPERIMENTS

A. EXPERIMENTAL APPARATUS AND PROCEDURES

Experiments were conducted in a water basin. It consisted of a

.- 12-foot-long, 3-foot-wide tank with aluminum bottom and plexiglass

walls (see Figure 3). Additional equipment consisted of plumbing for

the filling and emptying of the tank, a collimated light source, and the

dye system for flow visualization.

The two-dimensional trailing vortices were generated through

the use of two counter-rotating plates (see Figure 3). The mechanism

rotating the plates was located at the bottom of the tank and below a

plexiglass plate spanning the entire tank. In other words, the motion

of the driving system did not disturb the flow above the plexiglass.

The mechanism was actuated by releasing a weight attached to the

common driving shaft. Fluorescent dye was Introduced slowly into the

region between the plates through the use of two holes connected to

two dye reservoirs. The reason for the use of two reservoirs was that

different colors of dye can be used to visualize each trailing vortex.

B. PROCEDURES

Experiments were initiated by filling the tank to a suitable level.

removing any air bubbles, bringing the plates to their full open posi-

tions, waiting for a sufficient period of time for the fluid to come to

rest, introducing the neutrally buoyant dye, actuating the light source
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and the video system, and initiating the rotation of the plates by sud-

denly releasing the load attached to the driving shaft The plates

rotated smoothly and then came to rest on the plexiglass. In other

words, the plates generating the vortices literally "disappeared."

Thus, no other vortices were generated. It is a well-known fact that

this is not the case with piston-generated vortices. When the piston

stops, two additional vortices (from a two-dimensional piston) or

another vortex ring (from an axisymmetric piston) are generated. The

-L-, -:mechanism used in the present investigation effectively prevents the

,>1.' generation of secondary vortices by simply disappearing.

The trailing vortices rise under their mutual induction velocity,

quickly give rise to a Kelvin oval, and smoothly approach the free sur-

*face. When the vortices are at a distance of about 1.0 from the free

surface, the free surface begins to rise and forms a smooth hump, bor-

dered by two scars. For the Froude numbers achievable (maximum

0.35), the trailing vortices turn quickly to right and left (as if they

were approaching a rigid surface), the scar front moves in the respec-

tive directions ahead of the vortex, and the hump between the vortices

begins to recede. During the later stages of the motion, the scars are

slaved to the vortices and continue to move ahead and in the direction

-i of the vortices,

Figures 4.1 through 4.12 show the evolution of the free surface at

vrious times T for a Froude number of Fv = 0.35. The vortex centers

are clearly visible in these pictures because of the additional assistance

provided by the dissolved air bubbles to the flow visualization efforts.
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VI. DISCUSSION OF RESULTS

The computer code based on the boundary element methods

through the use of the discrete vortices has been used to carry out

calculations for various Froude numbers in order to predict the evolu-

tion of the free surface deformation. The type of the vortex distribu-

tion, time increment, and the iteration techniques have been varied

"ithin limits to explore the differences in the motion of the free sur-

face. The results have shown that the calculations are fairly stable at

• relatively high Froude numbers. However. at relatively small Froude

numbers, the Kelvin-Helmholtz instability sets in quickly and the free

surface exhibits highly irregular shapes. It appears that either the

integration procedures have to be refined or more sophisticated vor-

tex sheets have to be used to calculate the small deformation of the

free surface at small Froude numbers.

The results obtained with a Froude number of Fv = 1.125 are

shown in Figures 2.1 through 2.27. The most striking feature of these

results is that the free surface rises rapidly to a height of about 1.25

above the mean water level and captures the vortex pair. It has not

been possible to carry out the calculations to larger times. The fact

should be kept in mind that the point vortices used in the numerical

calculations may have very little resemblance to the real vortices by

the time they rise to the mean water level. In fact, the experiments
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show that the vortices become quickly turbulent. There is at present

no possibility of incorporating into a numerical analysis the motion of a

turbulent vortex.

Experiments were carried out at a maximum Froude number of

0.35. Tie evolution of the free surface is shown in Figures 4.1 through

4.12. The shape of the free surface at the time of maximum rise is
plotted in Figure 5. Figures 4 and 5 show that the free surface rises to

a maximum heipht of about 0.25, develops two strong scars, and then

subsides as the vortices begin to move parallel to the free surface. The

%scar front is slightly' ahead of the vortex center and reduces to a small

depression at larger times. The results presented in Figures 4 and 5

should form the basis of comparison for future numerical efforts at the

corresponding Froude numbers. Additional calculations are underway

with more sophisticated vortex sheets. The results presented herein

are extremely encouraging and are expected to lead to a better under-

standing of this extremel%, complex and challenging phenomenon.

6.
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P+ VII. CONCLUSIONS

The investigation reported herein warranted the following

conclusions:

1. The basic equations governing the motion of vortices in homo-
geneous and density-stratified media have been developed and
expressed in terms of dynamic and buoyant scaling laws;.

2. A novel experimental technique has been devised to generate a
nearly two-dimensional vortex pair rising toward a free surface;

3. Migration of a vortex pair toward a free surface gives rise to a
bulge and two scars;

4. The maximum rise at the free surface occurs when the vortex
pair is at a depth of about 0.5;

5. In the range of Froude numbers encountered in the experi-
ments, the rise of the free surface is always followed by a fall as
the vortices begin to move parallel to the free surface at large
times;

6. The numerical analysis of the free surface deformation through
the use of discrete vortices leads to instabilities at low Froude
numbers. These instabilities could have been removed with a
suitable numerical filter or smoothing technique. However, the

S,use of a relatively subjective smoothing procedure has been ruled
out. The calculations at a Froude number of 1.125 have yielded
fairly stable solutions and provided the basis for comparison with
future experiments.

,4
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APPENDIX: FIGURES
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